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Abstract: Diffuse speckle contrast analysis (DSCA) measures blood flow in deep tissues by 
taking advantage of the sensitivity of the speckle contrast signal to red blood cells (RBCs) 
motions. However, there has yet to be presented a clearly defined relationship between the 
absolute blood flow BFabs and the measured speckle contrast signal. Here, we derive an 
expression of linear approximation function for speckle contrast, taking into account both 
shear-induced diffusive and correlated advective RBCs motions in the vessels. We provide a 
linear relationship between the slope kslope of this linear function and BFabs. The feasibility of 
this relationship is validated by Monte Carlo simulations of heterogeneous tissue with varying 
vessel radii. Furthermore, based on this quantitative relationship, we can determine the 
relative contributions of diffusive RBCs motion on the reduction of speckle contrast, 
considering different vascular morphology and flow profiles. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Several optical approaches have been used for non-invasive blood flow measurements for the 
last several decades, in either single or multiple scattering regimes. The former technique, 
known as laser speckle contrast imaging (LSCI) [1–4], uses the spatio-temporal blurring of 
the speckle imaging defined as speckle contrast K to measure blood flow information in 
superficial tissues. LSCI is performed by the illumination of the biological tissue with a 
coherent light source and imaging of the reflected speckle by a camera. This technique allows 
the use of a simple experimental setup with the advantages of a relatively high spatio-
temporal resolution, but under the condition of single or few scattering events it limits the 
photon penetration depth in the tissue [5]. 

On the other hand, diffuse correlation spectroscopy (DCS) [6, 7] has been developed for 
probing deep tissue blood flow by monitoring the light intensity fluctuations of the reflected 
diffuse speckle from the tissue. DCS offers continuous blood flow monitoring and has been 
extensively used for various clinical applications such as brain [8–10], cancer [11, 12] and 
muscle [13, 14]. Usually, DCS needs the single mode fiber with a smaller diameter, single 
photon counting avalanche photodiode and photon correlator to detect an independent 
speckle. To obtain a higher signal-to-noise (SNR), it is necessary to use multiple detectors to 
simultaneously acquire multiple independent speckles, which results in the increasing of the 
cost and complexity of DCS. 

Recently, an alternative method called diffuse speckle contrast analysis (DSCA) [15–18] 
was developed for measuring blood flow in the deep tissue by the combination of LSCI and 
DCS. DSCA holds deep tissue probing capabilities of DCS and simple hardware instrument 
of LSCI. Generally, DSCA utilizes the dependence of measured speckle contrasts on source-
detector distances or exposure time [19] to decouple the effects of absorption and scattering 
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[20, 21] from the dynamics, and, therefore, extracts a quantitative estimate of blood flow in 
vivo [22]. Besides, the fast cameras with a high frame rate [23, 24] can rapidly improve 
acquisition speed of speckle images. 

In fact, DSCA and DCS are examining different aspects of the same entity [25], i.e., the 
temporal electric autocorrelation function of the diffusely reflected speckles caused by the 
movement of red blood cells (RBCs). Currently, the most common model for describing the 
RBCs motion is a Brownian diffusion-like process, which provides a better characterization 
of the autocorrelation function signals in a range of subjects and tissue types than the 
expected random flow model which describes the RBCs motion is ballistic. Based on 
Brownian motion model, we have developed and tested a thorough speckle contrast model 
[26–28] in DSCA for quantitative measurement of the RBCs motion. Although the blood flow 
index (BFI) in Brownian motion model has been shown to be approximately proportional to 
absolute blood flow BFabs, the interpretation of the BFI is complicated due to its units of cm2/s 
and the value of this proportionality between BFI and BFabs is not clear in DSCA. Therefore, 
establishing the quantitative relationship between BFI in DSCA and BFabs is urgently 
necessary and significant. 

For this quantification, firstly it is necessary to clearly understand intravascular RBCs 
dynamics in the tissues. It has been found [29, 30] that RBCs undergo shear-induced 
displacement in blood flow, and the calculated electric autocorrelation function largely 
depends on this shear-induced diffusive RBCs motions, while the effect of correlated 
advective RBCs motion is relatively smaller [31–33]. The challenge of understanding the 
effect of diffusive and advective RBCs motions on DSCA signals stems from the fact that the 
speckle contrast signal is obtained from dynamic scattering inside the vessels and the vessels 
comprise only a small fraction of the tissue volume. Therefore, it is necessary to separate the 
intravascular scattering events from the extravascular scattering, and explicitly record the 
location of each dynamic scattering event in the vessels. Monte Carlo simulation [5, 31] can 
accurately model dynamic scattering event in the realistic and complex tissue. 

In this paper, the reduction in speckle contrast due to the relative contribution of diffusive 
and correlated advective RBCs motions is studied by theory and Monte Carlo simulations. 
We derive the linear approximation expression for speckle contrast in the heterogeneous 
tissue with varying vessel radii and blood flow profiles, and establish the quantitative 
relationship between the slope kslope of this linear function with the absolute blood flow BFabs. 
Meanwhile, we employ three-dimensional Monte Carlo simulations of photons propagation 
through tissues to support these results. This linear approximation expression can be also used 
to model the speckle contrast signals in the realistic tissue with the heterogeneous blood flow 
profiles and a complex vascular network. 

2. Theory and methods 

2.1 Intravascular red blood cell motion 

The question of the proper statistical model for describing intravascular RBCs motion and 
ultimately relating this model to the measured electric autocorrelation function or speckle 
contrast have been the subject of numerous studies [30, 34–36]. Usually, RBCs displacement 
has been modeled as random flow with <Δr2(τ)> = V2τ2, where <Δr2(τ)> is the mean-squared 
displacement (MSD) of RBCs in time τ and V2 is the second moment of the velocity of RBCs, 
or as Brownian motion with <Δr2(τ)> = 6DBτ, where DB is the effective Brownian diffusion 
coefficient. Unexpectedly, Brownian motion model leads to better description of the 
experimental results in validation studies compared with random flow model. 

It should be noted that both models mentioned above have generally assumed that the 
dynamic scattering events with RBCs in vessels are uncorrelated. This assumption is valid if 
the photons scatter only once inside a vessel and then encounter another vessel before their 
direction becomes randomized by the scattering from extravascular tissue. In fact, the 
scattering length of the photons inside the vessel at the common laser wavelengths (790-
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810nm) used in DCS or DSCA is ~12μm [37], which is smaller than some vessel diameters in 
the tissue. This leads to the breakdown of this uncorrelated scattering assumption because the 
photons in a large vessel will most likely undergo multiple scattering events which are in fact 
highly correlated. When multiple scattering in a single vessel is present, the contribution of 
each scattering event to dynamic information depends on the velocity difference between 
subsequent correlated scattering events [38]. 

To account for the effect of correlated RBCs motions on the speckle contrast signal, it is 
necessary to understand RBCs dynamic in the vessels. Usually the spatial flow speed profile 
of the vessels has the form as [39] 

 ( ) max 1 ,
m

m

r
v r v a

R

 
= − 

 
 (1) 

where vmax is the maximum speed at the center line of the vessel, R is the radius of the vessel, 
r is the distance from the vessel center line, a is a scale factor that determine the nonzero 
velocity at the vessel wall, and m is the bluntness of flow profile. 

Equation (1) describes a general form of advective flow in vessels and is experimentally 
verified by the method of dynamic light scattering – optical coherence tomography (DLS-
OCT) [33]. Usually, the flow profile of bigger vessels (R>20μm) [33] can be considered to be 
parabolic (i.e., m = 2) and there is more bluntness in smaller vessels. Meanwhile, recent 
studies [31, 32] found that in addition to advective motions RBCs also undergo shear-induced 
diffusive motions in the vessels. The shear-induced diffusion coefficient D(r) is proportional 
to the shear rate αss [40], i.e., 

 ( ) ( ) 1
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m

m

v r mav r
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α α

−∂
= =

∂
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where αss has a magnitude of ~0.1 to 0.5 × 10−6mm2 [33]. 
Based on Eq. (1) and (2), we can determine the velocity of the location of each scattering 

event in the vessel taking into account both diffusive and advective RBCs motions. In the 
following section, we will show the effect of correlated RBC motion on electric 
autocorrelation function and speckle contrast. 

2.2 Diffuse speckle contrast analysis (DSCA) 

A speckle pattern is a random interference pattern generated when photons from coherent 
light are scattered in a random medium. If the scatterers in the medium are mobile, as in the 
case of RBCs, the time integrated speckle pattern recorded by the camera becomes blurred. 
DSCA qualifies this degree of blurring by the ratio of the measured standard variance ( Iσ ) to 

the mean intensity ( Iμ ) in spatial or temporal domain, as 

 ( ) ( )
( )

,
, ,

,
I

I

T
K T
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σ ρ
ρ

μ ρ
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where ρ is the source-detector (SD) separation, T is the exposure time of the camera, and K is 
the speckle contrast. In fact, the speckle contrast is essentially related to the normalized 
electric autocorrelation function g1(r,τ) [15, 16] as 

 ( ) ( ) ( ) 22
10

2
, 1 , ,

T
K T T g d

T

βρ τ ρ τ τ= −     (4) 

where β is a constant determined by the experimental setup [41], g1(ρ,τ) = G1(ρ,τ)/G1(ρ,0), 
G1(ρ,τ) = <E(ρ,t)E*(ρ,t + τ)>, τ is the delay time and E(ρ,t) is the light electric field. 
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Formally, the transport of G1(ρ,τ) in multiple scattering media is well modeled by the 
correlation diffusion equation (CDE) [7, 42]. Sakadžić et al. [32] recently considered the 
effect of the correlated RBCs motion with diffusive and advective dynamics on the CDE, and 
derived the expression of G1(ρ,τ) in a realistic vascular network with a heterogeneous 
distribution of the vessels with different radii and flow velocities. For simplicity, we consider 
only one vessel type with the same radius R and blood flow in the tissue and the analytic 
solution of G1(ρ,τ) for the semi-infinite media is given by [32] 

 ( ) ( )( ) ( )( )1 2

1
1 2

exp exp3
, ,

4
s

r r
G

r r

κ τ κ τμρ τ
π
 − −′

= − 
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where 

 ( ) ( )3
3 ,

2a s s Fκ τ μ μ μ τ′ ′= +  (6) 
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0 tr ves av av

2
4 .

3
F k l D vτ δ τ τ−  = + 

 
 (7) 

Here, 2 2 2
1 0r zρ= + , ( )22 2

2 0 b2r z zρ= + + , ( ) ( )b eff eff2 1 3 1sz R Rμ′= − +   , 0 1 sz μ′= , Reff is 

the effective reflection coefficient accounting for the index mismatch between the tissue and 
surrounding medium [43], aμ  is the average absorption coefficient, sμ′  is the average 

reduced scattering coefficient, k0 is the wavenumber of light in the media, ltr is the mean free 
path in the vessel, δves accounts for the probability of the dynamic scattering from RBCs. Note 
that the average optical properties ( aμ  and sμ′ ) consider the heterogeneity of the tissue and 

can be measured by multi-distance DCS [44, 45] or frequency-domain spatially resolved 
spectroscopy [46]. Besides, the parameter δves is currently difficult to determine 
experimentally and usually is estimated by the volume fraction of the vessels in the tissue. Dav 
and vav are the average value of diffusion coefficient D(r) and advective motion v(r), 
respectively. This allows us to write [32] 
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Based on Eq. (4)-(9), we can determine the theoretical dependence of speckle contrast on 
the SD separation or exposure time under the condition of the combination of diffusive and 
convective RBCs motion. Meanwhile, we note that it is difficult to obtain the analytical 
expression for the speckle contrast function due to the complex computation process of 
integral equation, and the necessary steps to be taken to overcome it. 

2.3 Linear approximation for diffuse speckle contrast analysis 

Our previous works [27] have demonstrated that the relation between 1/K2 and exposure time 
can be described by a linear approximation equation and the slope kslope is equal to the inverse 
of the correlation time (τc) of autocorrelation function g1(ρ,τ). In this section, we derive the 
expressions for the correlation time τc and this linear approximation model considering 
diffusive and advective motion. 

To obtain correlation time in Eq. (5), we firstly note that the function G1(ρ,τ) is derived 
from the radiative transfer equation using diffusion approximation. Since diffusion 
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approximation is usually valid when the SD separation ρ is much larger than the transport 
mean-free path z0, r2 in Eq. (5) can be approximately given by 

 
2 2

1 22 2 1 1
2 1 1 1 2

1 2 1 1

1 1
2 ,   1 ,

z z
r r z r

r r r r

 
 = + ≈ + ≈ −  

 
 (10) 

where ( )2
1 b b 02z z z z= +  and 1 1z r . Thus, Eq. (5) can be approximated as 
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Meanwhile, we can introduce another approximation ( ) ( )2 2
1 1 1 1exp 1c cz r z rκ τ κ τ − ≈ −   

when ( ) 2
1 1 1c z rκ τ  , which is usually satisfied at the larger SD separation. This procedure 

yields the expression for G1(ρ,τc) 
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So g1(ρ,τc) can be expressed as 
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where 0 3 a sκ μ μ′= . Equation (13) can be subsequently written as 

 ( ) ( ) ( ) ( )1 1 0 1 0 1 1ln , ln 1 ln 1 1.c c cg r r r rρ τ κ κ κ τ κ τ= − + + + − = −        (14) 

Thus, Eq. (14) can be further represented as 

 ( ) ( ) ( )1 1 1 0 1 01 ln 1 2 ln 1 .c cr r r rκ τ κ τ κ κ+ − + = + − +    (15) 

If we define x = LnF(x0) is the solution for the equation 0lnx x x− = , this allows us to obtain 

the solution for Eq. (15) and write 
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where ( )1 1 0 1 02 ln 1r rε κ κ= + − + , and 1ε  only depends on SD separation and optical 

properties of the tissue. Finally, the correlation time τc for g1(ρ,τ) can be obtained from 
substitution of Eq. (6)-(9) into Eq. (16), i.e., 
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where 

 ( )
1

1av ss
2 0 tr ves 0 tr ves

av

2 2
3 3 1 .

1 2s s

D m a a
k l k l

v m R m

αε μ δ μ δ
−

−  ′ ′= = − + + 
 (18) 

Equation (17) is a general result that determines the correlation time in DCS considering 
the combination of diffusive and advective RBCs motion. Meanwhile, we have demonstrated 
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that the slope kslope of the linear approximation model for DSCA is equal to the inverse of the 
correlation time [27], i.e., kslope = 1/τc. Thus, the corresponding speckle contrast 1/K2 can be 
approximatively expressed as 

 
( ) ( )

1
1 0 tr ves

av in2 2 2 2 2 2
1 1 2 1 0 1 2

1 1
,

, 1

sr k l
v T b

K T LnF r r r

μ δ
βρ ε ε κ ε

− ′ = + 
− + − −    
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where bin is the intercept and can be obtained by the linear fitting. 
In order to clearly understand the relationship between the blood flow index kslope in Eq. 

(19) and absolute blood flow BFabs, it is important to have a clear definition of BFabs used in 
DCS and DSCA. Usually BFabs is defined as the volume of blood transiting through a given 
cross-sectional area per second, which is given by cross-sectional area times average RBCs 
speed, i.e., 2

abs avBF R vπ= . Therefore, a clear linear relationship between kslope and BFabs can 

be established by 

 
( ){ }
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slope abs
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sr k l
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R LnF r r r

μ δ

π ε ε κ ε

−′
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From Eq. (20), it is apparent that the relative change in BFabs can be rapidly obtained by 
calculating the corresponding change in kslope. Meanwhile, knowledge of this proportionality 
in Eq. (20) is required to determine BFabs form the measured kslope. However, this 
proportionality is complicated and related to multiple parameters such as the vessel radius, 
RBCs rheology (a, m, and αss), optical properties of the tissue, δves and SD separation, etc. 
Some parameters in tissue are now not accessible by experimental method and further studies 
are necessary to discuss this problem. Besides, an important assumption for deriving Eq. (20) 

is that the first order expansion ( ) ( )2 2
1 1 1 1exp 1c cz r z rκ τ κ τ − ≈ −   is a good approximation. 

In fact, this assumption is valid for the large SD separation, i.e., 1 sρ μ′ . Analytical and 

numerical computations of the influence of this error due to this approximation on kslope are 
given in the following section. 

2.4 Monte Carlo simulation 

For studying photon traversal inside the heterogeneous tissue and considering the effect of 
correlated RBCs motion on the speckle contrast, Monte Carlo simulation can be used to track 
the consecutive scattering events in the tissue. Our Monte Carlo code is based on a three 
dimensional voxelized model developed in Ref [47]. Each voxel of the Monte Carlo geometry 
is assigned the optical properties that determine the distribution of photon scattering lengths 
and the degree of the absorption. The Henyey-Greenstein phase function with corresponding 
anisotropy g [48, 49] within the voxel containing the scattering event is used to calculate the 
scattering angle. 

The point source of photons with a defined direction is incident on the surface of the 
medium. The photons exiting the medium at different separations from the point source are 
detected. For each detected photon, the vector of momentum transfer q


 and the radial 

location of each scattering in different vessels, along with the absorption weight in the 
medium are saved. The momentum transfer q


 is defined as s iq k k= −

 
, where sk


 and ik


 are 

the scattered and incident field wavevector, respectively. q


 has a magnitude of 

( )02 sin 2q k θ= , where θ  is the scattering angle of the photon. The saved radial positon of 

the scattering event is used to calculate advective and diffusive dynamics of RBCs by Eq. (1) 
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and (2). Based on these recorded values, the correlation function G1(ρ,τ) can be given by 
summing over all detected photons [31] 
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 (21) 

where NP is the number of photons detected at the specific SD separation, Ns,n is the number 
of scattering event in Nv,n vessels for the n’th detected photon, Ns,n,l is the number of 
consecutive scattering events of the n’th detected photon in the l’th vessel, Ntis is the number 
of tissue type, ,a pμ  is the absorption coefficient of the p’th tissue type, and Ln,p is the total 

path length of the n’th detected photon in the p’th tissue type. Note that the sum 
, ,

2

, , , ,
1

s n lN

n l j n l j
j

q v
=

 
⋅  

 
  

is performed in the same vessel to consider the degree of correlation 

between Ns,n,l consecutive scattering events. This equation considers the influence of RBCs 
displacements due to the correlated advective and diffusive motion on the decay of G1(ρ,τ). 
Using Eq. (4) and the information about RBCs speed and shear-induced diffusion, we can 
further calculate the expected speckle contrast values by MC simulation. 

3. MC simulation geometry and RBCs motion 

 

Fig. 1. (x, z) cross section of Monte Carlo simulation geometry. 

To demonstrate the flexibility and validity of linear approximation model for DSCA in the 
heterogeneous media, a voxelized tissue-mimicking geometry in Fig. 1 is used in conjunction 
with Monte Carlo simulation to generate the speckle contrast measurements. Figure 1 shows 
the (x, z) cross section of the geometry with a size of 6 × 3cm. For simplicity, the blood 
vessels have the same radius R and are all oriented along the y-axis with an equal spacing h = 
200μm [31] in x-axis and z-axis. The values of the radius R and the vessel spacing h determine 
the volume fraction of the vessels. If needed, other values for h can be further used to 
consider different volume fraction of the vessels. Therefore, the geometry has an infinite 
extent in y-axis due to the translation symmetry. 

In our simulations, the blood flow profiles in Eq. (1) are assumed to be constant in time 
and approximately parabolic flow for the vessels with a larger radius (R>20μm), i.e., a = 1 
and m = 2. In general, the vessels with a smaller radius tend to have a uniform flow profile 
and in this case RBCs motion is dominated by diffusive motion. Increasing the vessel radius 

Source Detector 
ρ  

Vessels Extravascular 
tissue

Vessel radius
R

h
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x

z
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and considering parabolic flow profiles can find the influence of correlated RBCs motion on 
speckle contrast signals. If needed, other values for a and m can be further used to consider 
different blood flow profiles in the future. Besides, the value of shear rate αss is set to 0.24 × 
10−6mm2 from Ref [33]. measured in vivo. 

For each simulation, 108 photons at a point are used to illuminate the surface of the 
geometry along z-axis and a 0.5mm × 0.5mm square region of interest (ROI) at different 
distances ρ from the source point is used as the detector. All of the information for calculating 
Eq. (21) and (4) are recorded by our MC simulation. Besides, the intravascular and 
extravascular optical properties at 800nm for a blood hematocrit 40% [37] are shown in Table 
1. 

Table 1. Optical properties for MC geometry 

 
sμ (mm−1) aμ (mm−1) g 

Intravascular 82 0.3 0.977 

Extravascular 10 0.002 0.9 

4. Results 

4.1 Corrected kslope expression 

Firstly, we test the accuracy of the expression for correlation time τc using theoretical data as 
shown in Fig. 2. An important assumption in this expression is that there are smaller errors 
arising from truncating SD separation terms in the Taylor Series expansion 

( ) 2
1 1exp c z rκ τ −   to first order. This assumption is valid when using large SD separations 

ρ, i.e., 1 sρ μ′ . Therefore, it is necessary to quantify the range of SD separation for which 

this expression can be accurately employed. The relative error in τc due to this assumption is 
defined as 

 ( )1Error in ln , 1.c cgτ ρ τ= − −    (22) 

We control the fractional changes in all parameters used for the calculation of correlation 
time τc in Eq. (17) and isolate the influence of all parameters on the relative error in τc. The 
theoretical results show that the error in τc only depends on tissue optical properties ( aμ and

sμ′ ) and SD separation, and the error signal is not sensitive to other parameters changes (such 

as vmax, a, m, etc.). As shown in Fig. 2, the change in relative error is greatest due to the 
combination term sρμ′  changes, and the changes in absorption aμ  and scattering sμ′  for the 

constant sρμ′  have the negligible influence on the relative error. Meanwhile, the error is 

relatively small (<5%) for the range 10sρμ′ ≥ . 

In order to correct this error due to this assumption, the modified expression for 
correlation time τcr is introduced by 

 
( )1

.
1 Error in ln ,

c c
cr

c cg

τ ττ
τ ρ τ

= =
+ −   

 (23) 

Note that knowledge of tissue optical properties ( aμ and sμ′ ) and SD separation can determine 

( )1ln , crg ρ τ    in Eq. (23). 
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Fig. 2. Dependence of relative error in τc on (a) aμ , (b) sμ′  and sρμ′ , and corresponding 

corrected electric field autocorrelation function results ( )1ln , crg ρ τ    at the modified 

correlation time τcr. Note that other parameters do not induce the change of the relative error. 

The change in relative error only depends on aμ , sμ′  and SD separations. 

Figure 2 also shows the corresponding corrected electric field autocorrelation function 

results ( )1ln , crg ρ τ    at the modified correlation time τcr. We note that this error is relatively 

small and can be negligible, even for dimensionless term approaching 5sρμ′ = , which in turn 

implies higher accuracy and wider range for the modified τcr expression. Therefore, the 
corresponding expression for kslope and BFabs can be further corrected by Eq. (23) 
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4.2 Validation with MC simulation data 

In this section, we validate the linear approximation model by MC simulation results. We 
vary RBCs speed (vmax from 1mm/s to 6mm/s with a step of 1mm/s) and vessel radius (R = 
20, 25, 30, 35, 40μm) with a fixed vessel spacing (h = 200μm) in MC simulations to test the 
dependence of kslope on BFabs. For all simulations, the intravascular and extravascular optical 
properties at 800nm for a blood hematocrit 40% are shown in Table 1. Then the average 
absorption aμ and reduced scattering coefficients sμ′  of the mimicking tissue are given by the 

volume fraction weighted average of the intravascular ( ,inaμ and ,exsμ′ ) and extravascular (

,exaμ and ,exsμ′ ) optical coefficients, i.e., ( ),in ,ex1a a aves vesμ δ δμ μ= + −  and 

( ),in ,ex1ve vs ss sesδ δμ μ μ′ ′ ′= + − , where 2 2
ves R hπδ = is the volume fraction of blood vessel. 

Besides, the RBCs dynamics in vessels and other parameters are detailed in Sec. 3. 
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Fig. 3. MC simulation and theoretical results for (a) K2 and (b) 1/K2 at different flow speeds 
vmax. The symbols and solid lines in (a) and (b) represent MC simulation and theoretical results, 
respectively. The symbols in (c) show the linear fitting results of kslope versus BFabs. The solid 
line in (c) is calculated by the corrected relation Eq. (24). Here, we use R = 30μm vessels and 
SD separation is 2cm. 

Figure 3(a) and 3(b) show K2 and 1/K2 results from MC simulations and theoretical 
calculations, respectively. In this example, the vessel radius is set to 30μm and SD separation 
is 2cm. Note that the theoretical results are numerically obtained by Eq. (4)-(9). These results 
show that the theoretical speckle contrast model fits MC simulation results well and the linear 
relation between 1/K2 and exposure time is obvious. Figure 3(c) shows the fitted values of 
kslope versus BFabs, compared with those calculated by the corrected relation using Eq. (24). 
These results in Fig. 3 demonstrate the validity of linear approximation model for DSCA and 
confirm that kslope increases linearly with BFabs. 

Figure 4 shows the calculated absolute blood flow BFabs from the linear fitting kslope results 
at different SD separations. Note that the changes in the absolute blood flow BFabs are 
accomplished by varying the vessel radius (from 20 to 40μm) with a fixed flow speed vmax = 
3mm/s and vessel spacing h = 200μm. The solid lines in Fig. 4 represent the expected BFabs 
results for SD separations of 1.0, 1.5 and 2.0cm. It is clearly found that this slope kslope of the 
linear approximation model predict well the absolute blood flow BFabs. The change in BFabs 
can be simply obtained by calculating the change in kslope. 
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Fig. 4. Calculated BFabs results for MC simulation and theoretical calculation versus linear 
fitting kslope results. The solid lines at different SD separations are calculated by Eq. (24). The 
absolute blood flow BFabs is accomplished by increasing the vessel radius from 20 to 40μm 
with a fixed flow speed vmax = 3mm/s and a fixed vessel spacing h = 200μm. 

5. Discussion 

Diffuse speckle contrast analysis (DSCA) has been employed extensively in blood flow 
measurement, in large part because of its simplicity. Usually the calculated speckle contrast 
fluctuations are driven by the RBCs motion and thus by blood flow. The question as to which 
model best characterizes RBCs motion within vessels has been widely studied. In this paper, 
we derive linear approximation expression for 1/K2 taking account both shear-induced 
diffusive and advective RBCs motions. To validate this theoretical model, we have performed 
Monte Carlo simulations in a simple tissue-mimicking geometry with parabolic flow profile 
and varying vessel radius. These theoretical and simulation results allow us to write a linear 
relation between the measured kslope and absolute blood flow BFabs. Meanwhile, in order to 
connect kslope calculation to BFabs some effects on this model need to be further discussed in 
actual applications. 

It should be noted that our previous works [27] have deduced an analytical expression 
kslope-DB for diffusive RBCs motions, i.e., 
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It is worthwhile to determine the relative contribution of diffusive motion on kslope in Eq. 
(24). We simply quantify this contribution by calculating the ratio between kslope-DB and kslope 
as shown in Fig. 5. Here we have used a fixed vessel volume fraction δves = 0.02, parabolic 
flow profile, a shear rate αss = 0.24 × 10−6mm2 and the same optical properties in Table 1. 
Figure 5 shows that increasing the vessel radius and decreasing SD separation both result in 
reduced importance of diffusive RBCs motion. Especially for the large vessel radius at the 
short SD separation [50], the advective RBCs motion may dominate kslope. For the small 
vessel radius, kslope mainly depends on diffusive RBCs motion. Furthermore, this contribution 
of diffusive motion also depends on other parameters of the vessels, such as shear rate αss and 
blood flow profile (a and m). So far the measured values of αss have large difference from in 
vivo and ex vivo [33, 40]. One can note that the higher the shear rate αss, the larger 
contribution of RBCs motion. The influence of blood flow profile on this contribution can be 
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calculated by Eq. (24) and kslope-DB. Equation (24) suggests an approach to determine the 
relative contributions of diffusive and advective RBCs motions on the reduction in speckle 
contrast. 

 

Fig. 5. Relative contributions of diffusive RBCs motions on the kslope for different vessel 
radiuses and SD separations. 

The source-detector (SD) separations used in MC simulation results are such that SD 
direction is perpendicular to the blood flow direction as shown in Fig. 1. In fact, the actual 
vessel directions in the tissue are random and complex. Figure 6(a) shows the effect of 
specific SD direction, which is perpendicular or parallel to vessel direction, and all used SD 
directions on the obtained speckle contrast 1/K2 results from the same MC simulations. It is 
obvious that the results 1/K2 tend to be the same and the corresponding absolute percentage 
changes in 1/K2 compared with the perpendicular case are shown in Fig. 6(b). The relative 
error in 1/K2 is no more than 2%. Meanwhile, Ref [31] have verified that the preferred 
direction of the vessels only introduce a small bias for the correlation function g1(ρ,τ) 
compared with a truly random direction of the vessels. It is apparent that the calculated 1/K2 
at a certain SD separation doesn’t depend on the relative direction of SD separation with 
respect to vessel direction. 

 

Fig. 6. Effect of SD direction with respect to vessel direction on the obtained speckle contrast 
1/K2 results from MC simulations. The red and black lines in (a) indicate 1/K2 from SD 
separations that is perpendicular and parallel to vessel direction, respectively. The blue lines in 
(a) indicate 1/K2 from SD separations in all directions. The corresponding percentage change 
in 1/K2 at different SD separations compared with perpendicular case is shown in (b). Here, we 
use R = 30μm vessels with a fixed flow speed vmax = 3mm/s and a fixed vessel spacing h = 
200μm. 

For simplicity, we neglect the variation in radius and in flow speed among different 
vessels, and consider only one type of the vessel in this paper. In fact, when performing 
DSCA or DCS measurements in the tissue, the vessels encountered are different and 
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complicated. For instance, capillaries with a small radius (<5μm) tend to be have similar 
velocities, but veins, venules, arterioles, and arteries all have different radii and flow speeds. 
Usually the photons come across multiple vessels along their path, each with different speeds 
and radiuses, and often interact with extravascular compartments. These contributions taken 
together cause the decay of speckle contrast function. Note that the analytic solutions for 
G1(ρ,τ) [32] in Eq. (5)-(7) also can be used to predict DSCA signals in a realistic vascular 
network with a heterogeneous distribution of vessels with different radii and blood flow 
velocities. In this case, F(τ) in Eq. (7) can be expressed as [32] 
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where δves[R,vves,av(R)] and Dves,av[R, vves,av(R)] are the volume fractions and average diffusion 
coefficient of the vessel with radius R and average velocity vves,av(R), respectively. Therefore, 
the average diffusion coefficient Dav and advective speed vav in the linear approximation 
model have a complex nonlinear dependence on the distribution of vessel radius and RBCs 
speed distribution. It is important to point out that the differences of vessel radius and flow 
speed don’t affect the validity of linear approximation model. This linear approximation 
expression can be used to model the speckle contrast signals in the realistic tissue with the 
heterogeneous blood flow profiles and a complex vessel geometry. Further measurements and 
numerical modeling of a realistic vascular network are needed to study the relation between 
the DSCA measurements and blood flow in the future. 

Our results show that we can linearly relate the measured kslope to absolute blood flow 
BFabs. Note that the proportionality is related to the vascular morphology, RBCs rheology, 
optical properties of the tissue, and SD separation. In order to accomplish the quantitative 
measurement of BFabs from the measured kslope, we need to have a detailed knowledge of these 
parameters. However, some parameters now are not readily accessible. But the progress in the 
experimental methods may make these parameters available in the future. Further research is 
needed to study the quantitative measurement of BFabs. 

6. Conclusion 

In summary, we have presented the theoretical derivations for linear approximation model in 
DSCA that consider both diffusive and correlated advective RBCs motion, and demonstrated 
that the slope kslope of this linear model has a linear relation with absolute blood flow BFabs, 
which are in agreement with our Monte Carlo simulation results. Through this expression for 
kslope, we can determine the relative contribution of diffusive motion on the reduction of 
speckle contrast. We expect further studies to use this relation to obtain a direct measurement 
of BFabs in the more complex and realistic configurations of the tissue. 
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